skip to main content


Search for: All records

Creators/Authors contains: "Bindeman, I. N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Mount Elbrus, Europe's tallest and largely glaciated volcano, is made of silicic lavas and is known for Holocene eruptions, but the size and state of its magma chamber remain poorly constrained. We report high spatial resolution U–Th–Pb zircon ages, co-registered with oxygen and hafnium isotopic values, span ~ 0.6 Ma in each lava, documenting magmatic initiation that forms the current edifice. The best-fit thermochemical modeling constrains magmatic fluxes at 1.2 km 3 /1000 year by hot (900 °C), initially zircon-undersaturated dacite into a vertically extensive magma body since ~ 0.6 Ma, whereas a volcanic episode with eruptible magma only extends over the past 0.2 Ma, matching the age of oldest lavas. Simulations explain the total magma volume of ~ 180 km 3 , temporally oscillating δ 18 O and εHf values, and a wide range of zircon age distributions in each sample. These data provide insights into the current state (~ 200 km 3 of melt in a vertically extensive system) and the potential for future activity of Elbrus calling for much-needed seismic imaging. Similar zircon records worldwide require continuous intrusive activity by magmatic accretion of silicic magmas generated at depths, and that zircon ages do not reflect eruption ages but predate them by ~ 10 3 to 10 5  years reflecting protracted dissolution–crystallization histories. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    The basalts of the 2021 Fagradalsfjall eruption were the first erupted on the Reykjanes Peninsula in 781 years and offer a unique opportunity to determine the composition of the mantle underlying Iceland, in particular its oxygen isotope composition (δ18O values). The basalts show compositional variations in Zr/Y, Nb/Zr and Nb/Y values that span roughly half of the previously described range for Icelandic basaltic magmas and signal involvement of Icelandic plume (OIB) and Enriched Mid-Ocean Ridge Basalt (EMORB) in magma genesis. Here we show that Fagradalsfjall δ18O values are invariable (mean δ18O = 5.4 ± 0.3‰ 2 SD,N = 47) and indistinguishable from “normal” upper mantle, in contrast to significantly lower δ18O values reported for erupted materials elsewhere in Iceland (e.g., the 2014–2015 eruption at Holuhraun, Central Iceland). Thus, despite differing trace element characteristics, the melts that supplied the Fagradalsfjall eruption show no evidence for18O-depleted mantle or interaction with low-δ18O crust and may therefore represent a useful mantle reference value in this part of the Icelandic plume system.

     
    more » « less
  3. Abstract

    Continental flood basalts are more prone to compositional modification from passage through thicker and (or) more felsic crust in comparison to their oceanic counterparts. The Steens Basalt in southeast Oregon (~17 Ma) is among the oldest and most mafic members of the Columbia River Basalt Group and provides a record of the early stages of flood basalt volcanism. We evaluate the balance of mantle sources in time during the onset of Columbia River Basalt Group magmatism and assess the effect of crustal passage using stratigraphically controlled Sr, Nd, Pb, Hf, Os, and O isotopic compositions, as well as whole rock major and trace element data.

    Mixing models indicate that depleted and enriched mantle sources identified by previous workers contribute in varying proportions during the life of the magmatic system, with the greatest contribution by depleted mantle when eruption rate and presumed intrusion rate increase. During waxing, enrichment of δ18O in some flows signals cryptic deep fractionation of abundant clinopyroxene followed by shallow fractionation of olivine ± clinopyroxene ± plagioclase. Os concentrations are among the highest worldwide at a given MgO (0.29–0.86 ppb at 6.0 to 10.9 wt.%). We argue that high Os results from scavenging of sulfides by recharging magmas passing through earlier crystallized magmas. Elevated87Sr/86Sr in the latest stage supports modest assimilation of partial melts from mafic accreted terranes, facilitated by thermal priming of crust by persistent magmatism. This work provides a more detailed schematic view of the Steens Basalt magmatic system, from mantle origin through crustal staging.

     
    more » « less